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1 Introduction

There has recently been a renewed interest in the old idea that business cycles could

be driven by changes in the expectations about future economic conditions (early ref-

erences are Pigou, 1927, and Keynes, 1936). The literature has focused mainly on

anticipated changes in productivity, the so-called “news shocks” (Cochrane, 1994). The

seminal paper by Beaudry and Portier, 2006, (BP henceforth) finds that news shocks

account for the bulk of fluctuations in GDP and generate the pattern of comovements

among macroeconomic aggregates typically observed over the cycle.1 Several papers

have provided theoretical foundations for these results, by proposing models where news

shocks can drive the business cycle (see e.g. Jaimovich and Rebelo, 2009, Den Haan and

Kaltenbrunner, 2009, Schmitt-Grohe and Uribe, 2008). Key in these models is that news

shocks are assumed to be observable by the agents.

A stream of the literature on news shocks has departed from the assumption of

perfect information and proposed models where agents have imperfect information (Sims,

2003, Beaudry and Portier, 2004, Lorenzoni, 2009, Angeletos and La’O, 2010, among

others). In the theoretical work by Lorenzoni, 2009, for instance, agents base their

optimal decisions on a mixture of a news on aggregate productivity and noise. Though

they can eventually disentangle news from noise, their current action can only rely on

such a noisy signal. As a consequence agents’ expectations take time to completely

adjust, and the final result depends on the size of the noise within the observable signal.

In particular, if the signal is just noise, the economy returns to its initial state, whereas

if the signal contains productivity news, the economy gradually reaches a new level of

activity.

Assuming that agents base their decisions on noisy information seems quite plausible,

in particular for events —like improvements in technology— whose effects propagate

slowly and therefore are not immediately revealed by observable economic variables. In

the real world, agents are often uncertain about the future effects of facts that they

observe. Assuming that they are nor aware of the exact nature of such facts is a simple

and convenient way to model this kind of “conditional” uncertainty within the rational

expectations paradigm.

1Beaudry and Lucke, 2009, and Dupaigne and Portier, 2006, find similar results.
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Models with noisy information have important consequences for empirical analysis.

In particular, standard VAR methods cannot be employed (Blanchard, L’Huillier and

Lorenzoni, 2012, BLL henceforth). The reason is that economic variables, by reflecting

agents’ behavior, can only convey information which is available to them. If agents

cannot observe current structural shocks, current (and past) values of the economic time

series cannot contain the relevant information to estimate such shocks. As a consequence,

an econometrician will not be able to recover the structural shocks by a rotation of the

VAR residuals. After all, if this were possible for the econometrician, it would be possible

for the agents as well, contradicting the initial assumption.2

An equivalent formulation is that under imperfect information the structural shocks

are non-fundamental with respect to agents’ information set (Hansen and Sargent, 1991,

Lippi and Reichlin, 1993, 1994).3

This difficulty with the application of VAR methods is perhaps the main reason

why the noisy-information approach has been seldom applied in this literature. Most

empirical works about the business cycle effects of news, for instance, assume that news

are noise free, i.e. that the structural shocks are observable (see e.g. Cochrane, 1994,

Beaudry and Portier, 2006, Barsky and Sims, 2011, Forni, Gambetti and Sala, 2010).

However If the information is corrupted by noise what is interpreted as the structural

shock is actually a mixture of structural shock and noise.

By contrast, BLL and Barsky and Sims, 2012 (BS henceforth) assume noisy informa-

tion and try to assess the role of noise (“animal spirits” in Barsky and Sims’ terminology)

in driving output fluctuations. Both papers recognize that structural VARs are ill-suited

and resort to direct estimation of the theoretical model. However, as convincingly ar-

gued by Sims, 1980, this approach requires strong a priori restrictions on the dynamic

responses of the variables to the structural shocks. Such restrictions are necessarily arbi-

trary to a large extent, but may in principle have important effects on the final results. In

2Interesting and general results about the econometric implications of linear rational expectation

models with incomplete information can be found in Baxter, Graham and Wright, 2011.
3This kind of non-fundamentalness is different from the one that arises when the econometrician’s

information set is narrower than that of the agents. In the latter case, the problem can be solved in

principle by enlarging the data set (Forni, Giannone, Lippi and Reichlin, 2009, Forni and Gambetti,

2011).
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fact, the two papers reach opposite conclusions: in BLL the noise has very large effects,

whereas in BS “animal spirits” have essentially no effects.

In this paper we provide a non-standard structural VAR method, which allows es-

timation of the structural shocks and their effects under the assumption of imperfect

observability. We begin the analysis by presenting a theoretical model in which agents

observe the shock affecting future economic fundamentals, the real shock, with noise. The

signal observed by the agents is the sum of the real shock and a “noise” shock. As time

goes by, agents learn how much of the observed shock was noise and how much structural

economic shock. In other words, future data perfectly reveal current structural shocks.

This is the key mechanism which allows us to estimate the structural shocks. Indeed,

while a contemporaneous linear combination of the VAR residuals cannot deliver the

correct shock, a dynamic combination involving future residuals, can. More precisely,

we show that, once the reduced form VAR has been estimated, the structural shocks

and the corresponding impulse response functions can be obtained by applying suitable

dynamic rotations (Blaschke transformations) to the residuals and the reduced-form im-

pulse response functions.

Using this new approach we study the role of noise shocks as sources of business cycle

fluctuations. We find that “noisy news”, the real and the noise shocks together, explain

more than half of the fluctuations of GDP, consumption and investment. Expectations of

future changes in economic fundamentals should be considered a major source of business

cycle fluctuations. A large fraction of such fluctuations is due to noise shocks which

generate hump-shaped responses of GDP, consumption and investment and account for

about one third of their variance at short- and medium-run horizons. The role of noise is

much larger than in BS, where “animal spirits” have negligible effects, and qualitatively

different from BLL, where it is found to explain a very large fraction of consumption

fluctuations on impact, but a relatively small fraction of consumption variance at the

3-year horizon and almost nothing of investment fluctuations.

The remainder of the paper is organized as follows. Section 2 discusses the economic

model and the econometric implications; Section 3 presents the econometric model; Sec-

tion 4 presents the empirical evidence; Section 5 concludes.
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2 Some theory

In this section we present a simple model where agents decide the current level of con-

sumption on the basis of expected future economic fundamentals. Economic fundamen-

tals are driven by a structural shock which has delayed effects. Expectations are formed

on the basis of a limited information set, in the sense that agents do not observe the cur-

rent structural shock but only a noisy signal, the ”noisy news”. Precisely, agents observe

the aggregate of the structural and the noise shock. The implication is that consump-

tion reacts both to disturbances which actually affect future economic fundamentals and

disturbances which do not have any effect.

2.1 A simple model

We assume that potential output, at, follows the exogenous relation

at = at−1 + εt−1, (1)

where the εt is a Gaussian, serially uncorrelated process affecting at with a one-period

delay. We refer to this shock as “real” shock. Consumers observe a noisy signal of εt,

the signal henceforth, given by

st = εt + vt, (2)

where the noise shock vt is a Gaussian white noise, uncorrelated with εt at all leads and

lags. The variance of the signal is just the sum of the variances of the two shocks, σ2
s =

σ2
ε +σ2

v . In addition, agents observe potential output at, so that the consumers’ informa-

tion set is given by present and past values of at and st, i.e. It = span(at−k, st−k, k ≥ 0).

Given the delayed effects of the real shock, this information is not sufficient to distin-

guish the current true real shock from noise. At time t + 1, however, consumers learn

about the past realization of the two shocks since they observe εt = ∆at+1 and therefore

vt = st − εt.

Following BLLH, we assume that agents set consumption, ct, on the basis of expected

long-run fundamentals; precisely,

ct = lim
j→∞

E(at+j |It). (3)
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Realized output, yt, is fully demand-determined, i.e. yt = ct; employment adjusts to

clear the labor market.

2.2 Solution and economic implications

Given the process for at, we have E(at+j |It) = E(at+1|It) for any j > 1, so that

ct = E(at+1|It) = at + E(εt|It). (4)

Since at−k and st−k, for k > 0, are uninformative about εt, E(εt|It) is simply the

projection of εt on st, that is

E(εt|It) = γst

where γ = σ2
ε/σ

2
s . Therefore ct = at + γ(εt + vt) and the change in consumption is

∆ct = ∆at + γ∆(εt + vt)

= γεt + (1− γ)εt−1 + γvt − γvt−1. (5)

Following a real shock, consumption immediately jumps by γεt and in the second

period reaches its new long run level ct−1 + εt. Consumption reacts also to the noise

shock: following a positive noise shock, consumption increases by γvt on impact and then

reverts back to its initial level ct−1 after one period. Notice that the impact responses are

identical, since agents cannot distinguish between the two shocks in the current period.

However, after one period, observed potential output unveils the nature of the shock and

agents, recognizing it was noise, undo the initial increase by reducing consumption by

γvt. While the real shock has a permanent effect, the noise shock has only a temporary

effect.

It is instructive to compare these results with the case in which agents can observe

the real shock without error. In this case, equation (4) implies ct = at + εt and

∆ct = εt,

so that after a real shock consumption jumps immediately to its new long run level.4

Imperfect information has two implications. First, agents are more cautious in changing

4Notice that consumption is a random walk in both cases of complete and incomplete information.

To see this, consider that the first order autocovariance of ∆ct in equation (5) is σ2
εγ(1 − γ) − σ2

vγ
2 =

σ2
εγ − γ2(σ2

ε + σ2
v) = σ2

ε
σ2
ε
σ2
s
− σ4

ε
σ4
s
σ2
s = 0.
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their consumption pattern. More precisely, for a given variance of the real shock, the

higher is the variance of noise, the smaller is the contemporaneous change in consumption

(recall that γ = σ2
ε/σ

2
s). Second, the noise shock can generate cyclical fluctuations in

consumption and output completely unrelated to economic fundamentals.

Let us see how quantitatively important these fluctuations can be. The total variance

of consumption change is σ2
ε .

5 The contribution of the noise component is then

2γ2σ2
v

σ2
ε

= 2
σ2
ε

σ4
s

σ2
v =

2σ2
εσ

2
v

(σ2
v + σ2

ε)
2
,

which depends on the variance of the noise component. Let us consider the two limiting

cases σ2
v = 0 and σ2

v →∞. In the former case there is no noise, so that its contribution

to total variance is obviously zero. In the latter case the signal is dominated by noise,

so that it is not informative at all. Interestingly, the variance of the noise component

approaches zero also in this case. The reason is that agents recognize that the signal is

uninformative and do not react to it. Finally, it is easily seen that the above expression

reaches its maximum when σ2
v = σ2

ε . In this case 50% of the fluctuations of consumption

change are due to noise.

2.3 The failure of standard structural VAR methods

Imperfect observability of structural shocks has important econometric implications. To

see this, let us rewrite the solution of the model as
∆at

∆ct

st

 =


L 0

γ + (1− γ)L γ − γL

1 1


εt
vt

 , (6)

where L is the lag operator. To simplify things, let us further assume for the moment

that the econometrician can observe st.

First, the econometrician (just like the agents) would not be able to recover real and

noise shocks from the present and past values of at and st. It is easily seen from (6)

that the polynomial matrix of the subsystem associated to ∆at and st has determinant

vanishing at zero, which implies that the corresponding bivariate MA representation

5From (5) we have var(∆ct) = [γ2+(1−γ)2]σ2
ε+2γ2σ2

v = 2γ2σ2
s+(1−2γ)σ2

ε = 2σ4
ε/σ

2
s−2σ4

ε/σ
2
s+σ2

ε =

σ2
ε .
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is non-invertible and non-fundamental, so that a VAR representation in the structural

shocks does not exist.

The econometrician could also use consumption, in addition to potential output and

st, but still he/she would fail to recover the shock. For, the rank of the polynomial matrix

in (6) is one for L = 0, which means that even this “tall” representation is non-invertible

and non-fundamental. In other words, the two shocks cannot be obtained from present

and past values of the three variables.

Non-fundamentalness is a debated issue in the structural VAR literature. Early

references are Hansen and Sargent, 1991, and Lippi and Reichlin, 1993, 1994; more

recent contributions include Giannone and Reichlin, 2006, Fernandez-Villaverde et al.,

2007, Chari et al., 2008, Forni and Gambetti, 2011. Essentially, the problem is that

standard SVAR methods assume that the structural shocks are linear combinations of

the residuals obtained by estimating a VAR. If the structural MA representation of the

variables included in the VAR is non-fundamental, the structural shocks are not linear

combinations of such residuals, so that the method fails.6

In most of the economic literature, the structural shocks are elements of agents’

information set and non-fundamentalness may arise if the econometrician uses less infor-

mation than the agents. In this case, non-fundamentalness can in principle be solved by

enlarging the information set used by the econometrician (Forni, Giannone, Lippi and Re-

ichlin, 2009, Forni and Gambetti, 2011). But in the present setting non-fundamentalness

stems from agents’ ignorance and cannot be solved by adding variables to the VAR. The

economic intuition is that agents’ behavior cannot reveal information that agents do not

have. Consumption or other variables which are the outcome of agents’ decisions do not

add anything to the information already contained in at and st. More generally, in mod-

6An MA representation is fundamental if and only if the associated matrix is full column rank (i.e. the

rank is equal to the number of shocks) for all L with modulus less than one (see Rozanov, 1967, Ch. 2).

This condition is slightly different from invertibility, since invertibility requires full column rank also for

L with unit modulus. Hence non-fundamentalness implies non-invertibility, whereas the converse is not

true. When the variables are cointegrated, for instance, the MA representation of the first differences

is not invertible, but nonetheless can be fundamental. In such a case, non-invertibility can be easily

circumvented by resorting to structural ECM or level VAR estimation. Non-fundamentalness is a kind

of non-invertibility which cannot be solved in this way.
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els assuming that agents cannot see the structural shocks, the structural representation

is non fundamental for whatever set of observable variables. For, if it were, agents could

infer the shocks from the variables themselves, contrary to the assumption.

2.4 Agents’ innovations and structural shocks

As discussed above, the relevant shocks cannot be found by using standard VAR methods.

Hence a question arises: what shocks would the econometrician recover by running a VAR

for potential output and the signal? To answer to this question we need to find shocks

which are fundamental for ∆at and st. Starting with∆at

st

 =

L 0

1 1

εt
vt

 ,

we easily get the representation∆at

st

 =

1 Lσ2
ε/σ

2
s

0 1

ut
st

 (7)

where ut
st

 =

Lσ2
v
σ2
s
−Lσ

2
ε
σ2
s

1 1

εt
vt

 . (8)

Notice that ut and st are jointly white noise and orthogonal with variance σ2
u = σ2

vσ
2
ε/σ

2
s

and σ2
s respectively.7 Moreover, the determinant of the matrix in (7) is 1, so that the

MA representation (7) is fundamental, implying that ut and st are innovations of the

agents’ information set. The shock ut can be interpreted as the “learning” shock, as it

represents the new information about past structural shocks, resulting from observing

present and past ∆at and st.

In conclusion, by running a VAR for ∆at and st, the econometrician would not recover

the structural shocks εt and vt, but rather two shocks – learning and signal – which are

combinations of present and past values of the structural shocks. Of course, standard

identification schemes would fail, since no linear combination of the two innovations at

time t can deliver the structural shocks.

7To see that ut and vt are jointly white noise, observe that the covariance of ut and st−1 is σ2
vσ

2
ε/σ

2
s −

σ2
εσ

2
v/σ

2
s = 0.
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The next question is: can the true structural shocks be recovered and how? The

answer is positive, provided that the future values of the fundamental shocks are used.

As already observed, after one period the observation of potential output unveils the

real or noise nature of the signal. Indeed, representation (8) can be inverted toward the

future: εt
vt

 =

 L−1 σ2
ε
σ2
s

−L−1 σ2
v
σ2
s

ut
st

 . (9)

The above equation shows that the structural shocks, though not recoverable as static

linear combinations of the VAR residuals, can be obtained as dynamic linear combi-

nations, involving future values. This is the key result we will use in the econometric

section to identify real and noise shocks.

2.5 Agents’ “learning”: a comparison with BLLH and BS

A crucial novelty of our model with respect to existing literature is the agents’ learn-

ing process. For the sake of comparison, let us recast the BLLH model, with minor

modifications, in our notation. BLLH assumes that at is the sum of two components: a

permanent one (which may affect at on impact), driven by the shock εt, and a temporary

one, driven by the shock ηt. More specifically,

at = at−1 + (1− ρL)−1εt + (1− L)(1− ρL)−1ηt. (10)

The signal is the same as in our model and is given by equation (2). As in our model,

agents can observe at and the signal st.

The key difference between this model and ours is the reason why observing at and

st does not reveal the structural shocks. In our model, agents cannot see the structural

shocks because the shock affecting potential output has delayed effects; in other words,

because it is a real shock. On the other hand, in BLLH, non-observability is due to the

fact that there is also a temporary shock; that is, there are three shocks and only two

dynamically independent observable variables. Similarly, the model proposed in BS for

productivity and the signal has three shocks and just two variables.

This has a crucial implication. In our model, as time goes by, agents can recover past

shocks exactly: in the simple version of the model described above, they learn everything
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after one period; in a more general setting (see section 3) agents learn gradually, but in

the long run they can see past shocks without error. By contrast, in both BLLH and BS,

agents never learn completely the real or noise nature of past shocks. In both models,

the MA equilibrium representation for the observable variables is rectangular, with more

columns than rows. For instance, in BLLH we have

∆at

st

 =

(1− ρL)−1 0 (1− L)(1− ρL)−1

1 1 0



εt

vt

ηt

 . (11)

Obviously, (11) cannot be inverted, not even in the future: past shocks cannot be written

as dynamic linear combinations of the observables.

Similarly, the implications of our model for VAR analysis are different from what is

found in the previous literature. In the frameworks of BLLH and BS, VAR methods fail

because it is impossible to estimate the impulse response functions of three independent

shocks —as well as the shocks themselves— with a bivariate VAR. In our framework

instead, as we will show below, SVAR models can be employed successfully, as long as

dynamic identification is used.

3 The econometric model

In this section we generalize the simple model of section 2.4 and propose our dynamic

identification procedure.

Dynamic structural VAR identification is discussed in detail in Lippi and Reichlin,

1994. In their more general framework, the conditions required to reach identification

are very demanding. The econometrician should know the relevant unitary dynamic

transformation (the so called “Blaschke matrix”), which is characterized by the roots of

the determinant of the structural representation that are smaller than one in modulus.

Economic theory can hardly provide such information.

In the present setting, however, a restriction arises quite naturally from the theory:

the conceptual distinction between real and noise shocks requires that ∆at, the variable

representing economic fundamentals, is not affected by noise at any lag. As a conse-

quence, the reaction of ∆at to past signals st−1, and “true” real εt−1, are equal, up to

11



a multiplicative constant which is given by the signal-to-noise variance ratio. This in

turn implies that the “wrong” roots of the structural representation are revealed by the

impulse response function of ∆at to the signal st, which can be estimated.

3.1 Structural and fundamental representations

Let us consider a more general specification for potential output,

∆at = c(L)εt, (12)

where c(L) is a rational function in L with c(0) = 0. The structural representation

becomes ∆at

st

 =

c(L) 0

1 1

εt
vt

 , (13)

This representation is non-fundamental, since the determinant of the MA matrix, c(L),

vanishes by assumption for L = 0. This means that present and past values of the

observed variables ∆at and st contain strictly less information than present and past

values of εt and vt.

As we have seen above, stationarity of ∆at and st entails that the two variables have

a fundamental representation with orthogonal innovations. Such a representation can be

found as follows. Let rj , j = 1, . . . , n, be the roots of c(L) which are smaller than one in

modulus and

b(L) =
n∏
j=1

L− rj
1− r̄jL

where r̄j is the complex conjugate of rj . Then let us consider the representation∆at

st

 =

 c(L)
b(L)

c(L)σ2
ε

σ2
s

0 1

ut
st

 , (14)

where ut
st

 =

b(L)σ
2
v
σ2
s
−b(L)σ

2
ε
σ2
s

1 1

εt
vt

 (15)

As before, ut and st are orthogonal innovations for agents’ information set, so that

It = span(ut−k, st−k, k ≥ 0).8

8To see this, observe that the determinant of the matrix in (14), i.e. c(L)/b(L), vanishes only for

|L| ≥ 1 because of the very definition of b(L).
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The relation between the fundamental shocks and the structural shock is given byεt
vt

 =

 b(F ) σ2
ε
σ2
s

−b(F ) σ2
v
σ2
s

ut
st

 . (16)

where F is the forward operator, i.e. F = L−1.9 As in the previous section, the structural

shock depends on future fundamental innovations, with the difference that here the real

and noise shocks contained in the signal get unveiled in the long run, rather than after

one period.

We further assume that the signal st is not observed by the econometrician but there

is one observable variable, zt, which reveals the signal. In principle such a variable may

depend on both st and ut. Therefore we can write the representation of ∆at and zt as∆at

zt

 =

a11(L) a12(L)

a21(L) a22(L)

ut/σu
st/σs

 =

 c(L)σu
b(L)

c(L)σ2
ε

σs

d(L)σu f(L)σs

ut/σu
st/σs

 (17)

where, following the usual econometric convention, the shocks are normalized to have unit

variance. Observe however that the above representation is not necessarily fundamental,

since the determinant of the MA matrix depends on d(L) and f(L). In order to have

fundamentalness, zt has to be sufficiently informative to reveal st. In the reminder of

this section we assume fundamentalness of (17); in the empirical section we will test for

this property.

Moreover, ut/σu
st/σs

 =

b(L)σvσs −b(L)σεσs
σε
σs

σv
σs

εt/σε
vt/σv

 (18)

so that the structural representation is∆at

zt

 =

 c(L)σε 0

f(L)σε + b(L)d(L)σεσ
2
v

σ2
s

f(L)σv − b(L)d(L)σvσ
2
ε

σ2
s

εt/σε
vt/σv

 (19)

3.2 Dynamic identification

Dynamic identification of the structural shocks is done in two parts. First we estimate

and identify the fundamental representation (17); second we identify (18). Given the

estimates of the two representations, an estimate of representation (19) immediately

follows.
9Observe that 1/b(L) = b(F ).
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More specifically, the steps are the following.

1. Estimate an unrestricted VAR for ∆at and zt and compute the MA representation.

2. Impose that a12(0) = 0. This condition implies that st does not affect ∆at and

comes from the theoretical restriction c(0) = 0. In the bivariate case, this is

sufficient to identify the two fundamental shocks ut and st and obtain an estimate

of all the elements of the matrix of the impulse response functions of representation

(17).

3. Let us call â12(L) the estimate of c(L)σ2
ε/σs (see equation (17)). An estimate b̂(L)

of b(L) can be obtained as follows. Compute the roots of â12(L) and select the

roots which are smaller than one in modulus (of course, one out of these roots will

be zero by construction, because of the identifying assumption c(0) = 0 of step 1).

Using the roots which are smaller than one in modulus, estimate the polynomial

b(L) in equation (3.1).

4. Let â11(L) be the estimate of a11(L), i.e. our estimate of c(L)σu/b(L), and observe

that b(1) = 1. Estimate σε/σv as the ratio10

â12(1)

â11(1)
.

5. Using the property that: σ2
v/σ

2
s + σ2

ε/σ
2
s = 1, σ̂ε/σs and σ̂v/σs are obtained as

sin(arctan(σ̂ε/σv)) and cos(arctan(σ̂ε/σv)), respectively.

These five steps give the estimates of all the elements of representations (17) and (18)

and consequently of all the elements in (19).

The (normalized) structural shocks εt/σε and vt/σv can be estimated by inverting

equation (18). Since the determinant of the matrix in (18) 1/b(L) = b(F ) involves future

values of ut and st, the structural shocks cannot be estimated consistently at the end of

the sample. This is in line with the assumption that neither the agents, nor the econo-

metrician can see the current values of the structural shocks. However, in the middle

of the sample the future is known and (16) can in principle provide reliable estimates

of εt/σε and vt/σv. Such estimates can be used in combination with the corresponding

10In practice we compute the cumulated long-run effects as the effects at forty quarters.
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response functions to decompose the series into the real and noise components and assess

their importance in terms of explained variance.

Let us remark that the theoretical restrictions appearing in the first line of represen-

tation (17) are only partially exploited for identification and therefore can be used for

testing. Such restrictions entail that in the structural representation (19) the impulse

response function of ∆at to a noise shock be identically zero, an hypothesis that can be

easily verified by looking at the confidence bands.11

3.3 Multivariate specifications

Let us now consider a multivariate extension of the bivariate model described so far.

This model will be used in the empirical section to investigate the role of noisy news in

generating cyclical fluctuations.

Let ∆wt be an n − 2-dimensional vector of additional variables. In order to have a

square system, it is convenient to assume that there are also n − 2 additional shocks,

potentially affecting at. Equation (1) becomes

∆at = c(L)εt + g(L)et, (20)

where et is an n − 2-dimensional white noise vector with identity variance covariance

matrix, orthogonal to εt at all leads and lags, and g(L) is an n − 2-dimensional row

vector of rational functions in L. Moreover, we assume for simplicity that agents can

observe et.

Under these assumptions, the “innovation” representation can be written as
∆at

zt

∆wt

 =


c(L)σu
b(L)

c(L)σ2
ε

σs
g(L)

d(L)σu f(L)σs p(L)

q(L) h(L) m(L)



ut/σu

st/σs

et

 (21)

where p(L), q(L), h(L) and m(L) are conformable vectors and matrices of rational func-

tions in L. Again, we assume fundamentalness of such representation. The corresponding

11The identification restrictions 1-5 impose a zero impact effect and a zero long-run cumulated effect;

but between lag 0 and the maximal lag the impulse response function can be significantly different from

zero.
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structural representation is obtained by postmultiplying the above matrix by
b(L)σvσs −b(L)σεσs 0′

σε
σs

σv
σs

0′

0 0 In−2

 (22)

where 0 denotes the n− 2-dimensional column vector of zeros.

Within the multivariate framework, the condition that the real shock does not affect

at on impact is no longer sufficient, alone, to identify the model. To identify the learning

shock ut and st, we impose a Cholesky triangularization with the ordering ∆at, zt and

∆wt. The learning shock and st will be the first two Cholesky shocks. The reason for

this identification is that we want to allow for a contemporaneous effect of ut and st

on ∆wt. The drawback of this identification scheme is that ∆at is not allowed to react

contemporaneously to st and et, while zt is not allowed to react contemporaneously to

et. For this reason we will also try a different scheme where ∆wt is ordered first, ∆at

and zt second and third, respectively. The shocks ut and st will be the last two Cholesky

shocks.

4 Evidence

In this section, we apply the methods described above to study the role of real and noise

as sources of business cycle fluctuations. The main conclusion is that both real and noise

shocks explain a sizable fraction of the forecast error variance of GDP, consumption and

investment at business cycle horizons.

4.1 Data

The first step of our empirical analysis is to choose two series for at and zt. Remind that

the former is the variable representing economic fundamentals, which is unaffected by

noise, while the latter is a variable revealing the signal st.

To represent at we take the log of US potential GDP from the CBO (GDPPOT),

divided by population aged 16 years or more (civilian noninstitutional population). We

choose per-capita potential output rather than total factor productivity (TFP), which

is widely used in the expectation-driven business cycle literature, because TFP does not
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pass the test described at the end of Section 3.2., that is we find that it is significantly

affected by noise, contrary to a basic assumption of our model.

We use expected business conditions within the next 12 months (E12M), which is a

component of the consumer confidence index from the Michigan University Consumer

Survey, to represent zt.
12 In the robustness exercise below we try two alternative series

for zt, i.e. the Conference Board leading economic indicators index and the Standard &

Poor’s index of 500 common stocks. The latter variable is obtained from the monthly

S&P500 index provided by Datastream. We converted the series in quarterly figures by

taking simple averages and divided the resulting series by the GDP implicit price deflator

in order to express it in real terms. The resulting series is taken in logs.

Since we are interested in evaluating the business cycle effects of real and noise shocks,

we take in addition from the NIPA tables real GDP, real consumption, obtained as the

sum of nondurables and services, and real investment, obtained as the sum of private in-

vestment and durable consumption. All variables are divided by civilian noninstitutional

population and taken in logs.

Finally, in order to test for fundamentalness of the VAR, expressed in representation

(21), we use the principal components form a large data set of macroeconomic vari-

ables. Such variables, along with the corresponding transformations, are reported in the

Appendix. The time span of all data is 1960 I — 2010 IV.

4.2 VAR specification and the fundamentalness test

Our benchmark VAR specification includes potential GDP, E12M, real GDP (GDP),

real consumption of nondurables and services (CONS) and real private investment plus

consumption of durables (INV). To avoid potential cointegration problems we estimate

the VAR in levels. According to the AIC criterion we include four lags.

As explained in Section 3, identification is obtained by assuming that potential GDP

reacts on impact only to the learning shock and that expected business conditions react

on impact to the learning shock and the signal. This implies that the two shocks can

12Similar results, not shown here, are obtained with the expected confidence index and expected

business condition over the next 5 years, which is another component of the consumer sentiment index,

extensively discussed in BS.
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be found as the first two Cholesky shocks of the model with potential GDP ordered

first and expected business conditions ordered second. Such a scheme has the feature

that GDP, consumption and investment can react on impact both to the learning shock

and the signal st. The structural representation is obtained by following the procedure

explained in Section 3. Before identifying shocks, impulse response functions from the

VAR in levels have been differenced.

As a first step, we test for fundamentalness of representation (21) as suggested in

Forni and Gambetti, 2011. The idea underlying their method is simple: if representation

(21) is fundamental, i.e. if the variables used in the VAR span the information set of the

agents, then the estimated shocks (learning and st) must be orthogonal to all available

past information. The same orthogonality necessary condition holds a fortiori for the

structural shocks which are linear combination of present and future values of ut and st.

To represent available macroeconomic information we take the principal components

of the US macroeconomic data set reported in the Appendix. Table 1 reports the p-

values of the F-test of the regression of the estimated shocks on 2 and 4 lags of the first

j principal components, with j = 1, ..., 6. The null of orthogonality is never rejected.

For comparison, we report the corresponding results for the VAR including only

GDPPOT and E12M (Table 2). For the bivariate specification, orthogonality of st, real

and noise shocks is rejected, indicating that potential income and the confidence index

do not convey enough information to recover the signal st and the structural shocks.

4.3 Impulse response functions

Figures 1 and 2 depict the impulse response functions of the five variables to learning

and signal shocks. Shaded areas represent confidence bands at the 90% level constructed

using the Kilian (1998)’s method. As expected, the signal shock has a large and signifi-

cant impact effect on consumers’ confidence and anticipates significantly future potential

GDP. Moreover, it has a positive and significant impact effect on consumption, invest-

ment and realized GDP, reaching its maximum at the 2-year horizon. Afterwards, the

effect declines, while, at the same time, the effect of learning increases and becomes

significant. As agents learn about the past real and noise shocks by looking at potential

GDP, they partially correct their previous response to the signal.
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Figure 3 reports the impulse response functions of potential GDP and E12M to real

and noise shocks. The noise, as predicted by the model, has no effects on potential

output at all horizons. On the contrary, the response of potential output to the real

shock increases steadily, after a zero initial effect, reaching its new long run level after

about five years.

As for the consumer confidence indicator, both real and noise shocks have a significant

impact effect, but the effect of noise is larger, reflecting the estimate of σε/σs which is

only 0.40, as against an implied estimate of σv/σs of 0.91.

Next we turn our attention to GDP, consumption and investment (Figure 4). The

responses of the three variables to all shock have similar shapes. In the case of the

noise shock, the responses are hump-shaped with a relatively small, although significant,

impact effect; they reach a maximum after about two years, then decline approaching

zero after about five years. On the contrary, the responses to genuine real shocks are

permanent. As predicted by the model, noise shocks spur a wave of private consumption

and investment which vanishes once economic agents realize that the signal was just

noise.

4.4 Variance decomposition

Variance decompositions are reported in Table 3. The signal shock explains a relatively

small fraction of potential output volatility (about 23% at the four-year horizon), but

a very large fraction of realized GDP, consumption and investment (about 50-60% at

the 2-year and the 4-year horizons). This seems consistent with the general idea that

signals, while providing a rather imperfect anticipation of future changes of economic

fundamentals, are an important source of business cycle fluctuations.

Turning to the analysis of real and noise shocks, business cycle fluctuations are largely

driven by noise, which accounts for 30-40% of the forecast error variance of the three

variables at the two-year horizon. The real shock has a sizable, but more limited role

in the short run, accounting for about 20-25% of the variance of GDP and consumption

at the 2-year horizon. Investment, in particular, is largely dominated by noise, which

explains 45% of fluctuations at the 2-year horizon, as against only 5% for “genuine” real

shocks.
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Real shocks explain most of the variance of potential output at all horizons. By

contrast, consistently with the impulse response functions of Figure 3, the variance of

the consumer confidence indicator E12M is largely dominated by noise shocks. In fact, we

have seen that E12M anticipates a good deal of transitory fluctuations in GDP, unrelated

to potential GDP. This findings supports the “animal spirit” interpretation of consumer

sentiment, in contrast with BS, where fluctuations of confidence indicators are almost

entirely attributable to real shocks.

Noise and real shock together explain more than half of the fluctuations GDP, con-

sumption and investment at horizons ranging from 2 to 4 years. This finding and the

fact that the two shocks generate positive co-movements between GDP, consumption

and investment in the short and medium run, drives us to the main conclusion that

noisy expectations of future changes in economic fundamentals, which in large part do

not eventually materialize, should be considered a major source of business cycles.

Let us discuss the case of an econometrician that assumes that noise shocks do not

exist. He/she therefore mistakenly identifies the signal shock as the real shock (when real

shocks are absent, a shock that does not move on impact potential output is a real shock)

and will conclude that real shocks explain approximately 50-60% of real variables. The

econometrician will therefore attribute a higher role to real shocks, while a significant

part of business cycle fluctuations is driven by noise shocks.

The results on the relative role of real and noise shocks differ substantially with

what found in previous literature. First, the role of noise is much larger than in BS,

where “animal spirits” have negligible effects. Second, they are qualitatively different

from what found in BLLH, where noise explain a very large fraction of consumption

fluctuations on impact, a small fraction of consumption variance at the 3-year horizon,

and almost nothing of investment fluctuations at all horizons. Such large differences call

for some explanations. For the reasons explained in Section 2, the results of BLLH and

BS are not obtained by estimating a structural VAR. They specify a theoretical model

and estimate the parameters of the model. A shortcoming of such procedure is that

it requires strong a priori restrictions on the dynamic responses of the variables to the

structural shocks. For instance, BLLH assumes that the impulse response function of

∆at to the real shock is 1/(1−ρL), whereas BS assumes L/(1−αL). Both models assume
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that there is a second shock affecting productivity; BS assumes a permanent shock with

no dynamic at all, whereas BLLH assumes a transitory shock with response function

(1 − L)/(1 − ρL), the parameter ρ being the same as before. Clearly such restrictions

are arbitrary to a large extent and may in principle have important effects on the final

results. From this point of view, structural VAR methods have the advantage that the

dynamic shape of the impulse response functions is quite general. Here, impulse response

functions are obtained by imposing standard Choleski identification restrictions, along

with the condition that ∆at does not react contemporaneously to noise.

4.5 Historical decomposition

Figure 5 reports the yearly growth rates of GDP (top panel) and the cyclical component

of real GDP (bottom panel), as well as the component of the two series due to the noise

shock over the last two decades.13

Several interesting results emerge. First, during the boom of the late 90s the noise

is responsible for about half of the growth rate of GDP. Second, the shock substantially

contributes to the 2001 recession and the slow recovery of the following two years. The

low pace consumption and investment growth of the 2002 and 2003, according to the

picture, was largely attributable to bad signals about future potential output outcomes

which ex-post turned out to be just noise. Between 2004 and 2006 the shock again

substantially contributed to the economic expansion. It is interesting to notice that the

periods 1995-2000 and 2003-2006 were associated to asset prices bubbles.

In a companion paper, we show that noise in stock prices fully explains the informa-

tion technology boom of the stock market at the end of the nineties and the subsequent

burst (Forni, Gambetti, Lippi and Sala, 2013).

4.6 Alternative identifications

The drawback of our identification procedure is that, presumably, also other shocks

in addition to learning and the signal, could affect expected economic conditions con-

temporaneously. For this reason we implement two alternative identifications. In the

13The cyclical component of GDP is obtained by filtering the log of per-capita GDP with a band-pass

filter retaining waves of periodicity between 6 and 32 quarters.
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first, potential GDP and expected business conditions are ordered fourth and fifth, re-

spectively, after GDP, consumption and investment. Within this identification, both

potential output and consumer sentiment are allowed to react contemporaneously to all

other shocks.

Figure 6 and 7 reports the impulse response functions for the first alternative identi-

fication (dashed lines) as well as the point estimates and the confidence bands obtained

in the benchmark specification (solid line and gray areas). The results of the two identifi-

cation schemes are qualitatively and quantitatively similar. Table 4 reports the variance

decomposition. The fraction of forecast error variance attributable to both noise and real

shocks is slightly reduced as compared with Table 3, but the two shocks taken together

still account for about 50-60% of the variance of the three variables at the 4-year horizon.

In the second alternative identification, the federal funds rate is ordered second after

potential GDP and before consumer sentiment, GDP, consumption and investment. This

check is important to rule out the possibility that the noise shock actually captures

monetary policy shocks which also should have no effects on potential output. In general

the results (available upon request) are very similar to those obtained with the baseline

specification. For instance at a 2-year horizon the noise shocks explains 39%, 33% and

45% of GDP, consumption and investment forecast error variance respectively as against

40%, 32% and 45% of Table 3.

4.7 Alternative proxies for the signal

In this subsection we repeat the analysis done in the previous section for the benchmark

specification using different proxies for the signal. In particular we replace expected

business conditions with real stock prices (S&P500 deflated by the DGP deflator) and

the Conference Board Leading Economic Indicators Index. The two variables are ordered

second after the potential GDP. Figure 8 plots the impulse response obtained in the two

new specifications (dashed and dashed-dotted lines) as well as the point estimate and

the confidence bands obtained in the benchmark specification (solid line and gray areas).

The results for the new specifications are again qualitatively similar to those obtained

in the benchmark case with a few differences. In particular, with stock prices the re-

sponses of GDP, consumption and investment to the noise shock tend to be larger than
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those obtained with the two other specifications, and, consequently noise shocks even

more important for cyclical fluctuations.

Figures 9 and 10 report the historical decomposition of GDP for the two new speci-

fications. The results are similar to those obtained in the benchmark specification. The

ups and downs in the noise component are well synchronized with fluctuations in GDP.

The noise shock substantially contributes to the two booms and the 2001 recession.

5 Conclusions

In this paper we have presented a business cycle model where agents receive imperfect

signals about future economic fundamentals. We have shown that in this model the

structural MA representation of economic variables is non-fundamental, so that standard

structural VAR methods fail. We have argued that this is a general feature of models

where economic agents cannot see the structural shocks.

As times goes by, both the agents and the econometrician learn about past structural

shocks. A distinguishing feature of our model is that the structural shocks can be

recovered exactly from future information. This is is because, unlike existing models

with imperfect information, the number of structural shocks is equal to the number of

independent sources of informations observed by the agents. We have shown that in

this case structural VARs can still be successfully used to estimate the structural shocks

and the related impulse response functions, provided that identification is generalized to

include dynamic transformations of VAR residuals.

In the empirical section, we have estimated a VAR and imposed a dynamic scheme

to identify real and noise shocks and the related impulse response functions. We have

found that noise and real shocks together explain more than half of the fluctuations of

GDP, consumption and investment. A large fraction of such fluctuations is due to noise

shocks which generate hump-shaped responses of GDP, consumption and investment and

account for about one third of their variance at short- and medium-run horizons. The

role of noise shocks is much larger than in BS, where “animal spirits” have negligible

effects, and qualitatively different from BLLH, where it explains a very large fraction

of consumption fluctuations on impact, but a relatively small fraction of consumption

variance at the 3-year horizon and almost nothing of investment fluctuations.
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Appendix: Data (For Online Publication)

Transformations: 1 = levels, 2 = logs, 3 = first differences of logs. Most series are taken from the FRED database.

TFP data are taken from the Federal Reserve Bank of San Francisco database. A few stock market and leading

indicators are taken from Datastream. Monthly data have been temporally aggregated to get quarterly figures.

CNP = Civilian Noninstitutional Population (Fred mnemonic: CNP16OV).

24



no.series Transf. Mnemonic Long Label

1 2 GDPC1/CNP Real Gross Domestic Product/CNP

2 2 GNPC96/CNP Real Gross National Product/CNP

3 2 (NICUR/GDPDEF)/CNP (National Income/GDP Deflator)/CNP

4 2 DPIC96/CNP Real Disposable Personal Income/CNP

5 2 OUTNFB/CNP Nonfarm Business Sector: Output/CNP

6 2 FINSLC1/CNP Real Final Sales of Domestic Product/CNP

7 2 (FPIC1+PCNDGC96)/CNP (Real Private Fixed Inv. + Real Durables Cons.)/CNP

8 2 PRFIC1/CNP Real Private Residential Fixed Investment/CNP

9 2 PNFIC1/CNP Real Private Nonresidential Fixed Investment/CNP

10 2 GPDIC1/CNP Real Gross Private Domestic Investment/CNP

11 2 (PCNDGC96+PCESVC96)/CNP (Real Pers. Cons. Exp.: Non Durables + Services)/CNP

12 2 PCNDGC96/CNP Real Pers. Cons. Exp.: Nondurable Goods /CNP

13 2 PCDGCC96/CNP Real Pers. Cons. Exp.: Durable Goods/CNP

14 2 PCESVC96/CNP Real Pers. Cons. Exp.: Services/CNP

15 2 (GSAVE/GDPDEF)/CNP (Gross Saving/GDP Deflator)/CNP

16 2 FGCEC1/CNP Real Federal Cons. Exp. & Gross Investment/CNP

17 2 (FGEXPND/GDPDEF)/CNP (Federal Gov.: Current Exp./ GDP Deflator)/CNP

18 2 (FGRECPT/GDPDEF)/CNP (Federal Gov. Current Receipts/ GDP Deflator)/CNP

19 1 CBIC1 Real Change in Private Inventories

20 2 EXPGSC1/CNP Real Exports of Goods & Services /CNP

21 2 IMPGSC1/CNP Real Imports of Goods & Services /CNP

22 2 CP/GDPDEF Corporate Profits After Tax/GDP Deflator

23 2 NFCPATAX/GDPDEF Nonfin. Corp. Bus.: Profits After Tax/GDP Deflator

24 2 CNCF/GDPDEF Corporate Net Cash Flow/GDP Deflator

25 2 DIVIDEND/GDPDEF Net Corporate Dividends/GDP Deflator

26 2 HOANBS/CNP Nonfarm Business Sector: Hours of All Persons/CNP

27 2 OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons

28 2 UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments

29 2 ULCNFB Nonfarm Business Sector: Unit Labor Cost

30 2 WASCUR/CPI Compensation of Employees: Wages & Salary Accruals/CPI

31 3 COMPNFB Nonfarm Business Sector: Compensation Per Hour

32 2 COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour

33 3 GDPCTPI Gross Domestic Product: Chain-type Price Index

34 3 GNPCTPI Gross National Product: Chain-type Price Index

35 3 GDPDEF Gross Domestic Product: Implicit Price Deflator

36 3 GNPDEF Gross National Product: Implicit Price Deflator

37 2 INDPRO Industrial Production Index

38 2 IPBUSEQ Industrial Production: Business Equipment

39 2 IPCONGD Industrial Production: Consumer Goods
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no.series Transf. Mnemonic Long Label

40 2 IPDCONGD Industrial Production: Durable Consumer Goods

41 2 IPFINAL Industrial Production: Final Products (Market Group)

42 2 IPMAT Industrial Production: Materials

43 2 IPNCONGD Industrial Production: Nondurable Consumer Goods

44 1 AWHMAN Average Weekly Hours: Manufacturing

45 1 AWOTMAN Average Weekly Hours: Overtime: Manufacturing

46 1 CIVPART Civilian Participation Rate

47 2 CLF16OV Civilian Labor Force

48 2 CE16OV Civilian Employment

49 2 USPRIV All Employees: Total Private Industries

50 2 USGOOD All Employees: Goods-Producing Industries

51 2 SRVPRD All Employees: Service-Providing Industries

52 2 UNEMPLOY Unemployed

53 2 UEMPMEAN Average (Mean) Duration of Unemployment

54 1 UNRATE Civilian Unemployment Rate

55 2 HOUST Housing Starts: Total: New Privately Owned Housing Units Started

56 1 FEDFUNDS Effective Federal Funds Rate

57 1 TB3MS 3-Month Treasury Bill: Secondary Market Rate

58 1 GS1 1- Year Treasury Constant Maturity Rate

59 1 GS10 10-Year Treasury Constant Maturity Rate

60 1 AAA Moody’s Seasoned Aaa Corporate Bond Yield

61 1 BAA Moody’s Seasoned Baa Corporate Bond Yield

62 1 MPRIME Bank Prime Loan Rate

63 3 M1SL M1 Money Stock

64 3 M2MSL M2 Minus

65 3 M2SL M2 Money Stock

66 3 BUSLOANS Commercial and Industrial Loans at All Commercial Banks

67 3 CONSUMER Consumer (Individual) Loans at All Commercial Banks

68 3 LOANINV Total Loans and Investments at All Commercial Banks

69 3 REALLN Real Estate Loans at All Commercial Banks

70 3 TOTALSL Total Consumer Credit Outstanding

71 3 CPIAUCSL Consumer Price Index For All Urban Consumers: All Items

72 3 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food

73 3 CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy

74 3 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy

75 3 CPIENGSL Consumer Price Index for All Urban Consumers: Energy

76 3 CPIUFDSL Consumer Price Index for All Urban Consumers: Food

77 3 PPICPE Producer Price Index Finished Goods: Capital Equipment

78 3 PPICRM Producer Price Index: Crude Materials for Further Processing

79 3 PPIFCG Producer Price Index: Finished Consumer Goods

80 3 PPIFGS Producer Price Index: Finished Goods
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no.series Transf. Mnemonic Long Label

81 3 OILPRICE Spot Oil Price: West Texas Intermediate

82 3 USSHRPRCF US Dow Jones Industrials Share Price Index (EP) NADJ

83 2 US500STK US Standard & Poor’s Index if 500 Common Stocks

84 2 USI62...F US Share Price Index NADJ

85 2 USNOIDN.D US Manufacturers New Orders for Non Defense Capital Goods (B CI 27)

86 2 USCNORCGD US New Orders of Consumer Goods & Materials (BCI 8) CONA

87 1 USNAPMNO US ISM Manufacturers Survey: New Orders Index SADJ

88 2 USCYLEAD US The Conference Board Leading Economic Indicators Index S ADJ

89 2 USECRIWLH US Economic Cycle Research Institute Weekly Leading Index

90 2 GEXPND/GDPDEF (Government Current Expenditures/ GDP Deflator)

91 2 GRECPT/GDPDEF (Government Current Receipts/ GDP Deflator)

92 2 GCEC1 Real Government Consumption Expenditures & Gross Investment

93 2 Fernald’s TFP growth CU adjusted

94 2 Fernald’s TFP growth

95 2 (DOW JONES/GDP Deflator)/Civilian Noninstitutional Population

96 2 (S&P500/GDP Deflator)/Civilian Noninstitutional Population

97 2 Fernald’s TFP growth - Investment

98 2 Fernald’s TFP growth - Consumption

99 2 Fernald’s TFP growth CU - Investment

100 2 Fernald’s TFP growth CU - Consumption

101 1 Michigan Consumer Sentiment: Personal Finance Current

102 1 Michigan Consumer Sentiment: Personal Finance Expected

103 1 Michigan Consumer Sentiment: Business Condition 12 Months

104 1 Michigan Consumer Sentiment: Business Condition 5 Years

105 1 Michigan Consumer Sentiment: Buying Conditions

106 1 Michigan Consumer Sentiment: Current Index

107 1 Michigan Consumer Sentiment: Expected Index

108 2 GDPPOT US Potential Output from the CBO
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Shock Lags Principal Components

1 2 3 4 5 6

Learning 2 0.82 0.83 0.48 0.70 0.72 0.68

4 0.88 0.93 0.66 0.80 0.87 0.68

Signal 2 0.85 0.55 0.65 0.54 0.63 0.79

4 0.97 0.83 0.84 0.78 0.82 0.93

Real 2 0.95 0.75 0.92 0.85 0.73 0.61

4 0.95 0.91 0.66 0.74 0.78 0.73

Noise 2 0.60 0.40 0.42 0.51 0.65 0.78

4 0.79 0.67 0.71 0.79 0.86 0.91

Table 1: Results of the fundamentalness test in the 5-variable VAR. Each entry of the

table reports the p-value of the F -test in a regression of the shock on 2 and 4 lags of the

first differences of the first j principal components, j = 1, . . . , 6.
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Shock Lags Principal Components

1 2 3 4 5 6

Learning 2 0.97 0.80 0.60 0.79 0.70 0.75

4 0.87 0.80 0.66 0.75 0.70 0.49

Signal 2 0.09 0.02 0.02 0.00 0.00 0.01

4 0.24 0.06 0.03 0.02 0.03 0.10

Real 2 0.32 0.22 0.29 0.26 0.20 0.21

4 0.43 0.45 0.13 0.16 0.26 0.34

Noise 2 0.17 0.05 0.03 0.02 0.02 0.04

4 0.31 0.12 0.10 0.11 0.11 0.14

Table 2: Results of the fundamentalness test in the bivariate VAR. Each entry of the

table reports the p-value of the F -test in a regression of the shock on 2 and 4 lags of the

first differences of the first j principal components, j = 1, . . . , 6.
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Variable Horizon

Impact 1-Year 2-Years 4-Years 10-Years

Learning

GDPPOT 100.0 91.5 78.8 62.6 49.6

E12M 0.1 1.5 5.0 8.1 8.8

GDP 6.4 3.4 4.7 16.3 29.0

CONS 15.3 6.5 7.0 17.7 32.3

INV 0.5 0.9 0.7 4.0 12.3

Signal

GDPPOT 0.0 2.9 12.5 23.0 15.2

E12M 99.9 88.9 79.4 65.6 59.4

GDP 8.2 37.2 58.1 57.2 31.7

CONS 5.5 32.3 50.2 54.3 30.0

INV 7.7 36.1 49.0 47.5 35.3

Real

GDPPOT 0.0 87.4 87.6 81.4 63.1

E12M 16.3 15.1 21.2 23.3 21.2

GDP 1.4 15.7 22.2 39.3 44.3

CONS 1.0 18.7 23.9 41.6 48.9

INV 1.3 3.3 4.6 11.8 18.5

Noise

GDPPOT 0.0 4.6 2.1 3.1 1.1

E12M 83.7 75.1 63.0 51.1 47.1

GDP 7.3 24.6 40.0 33.5 16.2

CONS 5.5 19.3 32.4 29.6 13.1

INV 6.5 33.5 45.0 39.3 29.0

Real+Noise

GDPPOT 0.0 92.0 89.7 84.5 64.1

E12M 100.0 90.2 84.2 74.4 68.3

GDP 8.7 40.2 62.2 72.8 60.4

CONS 6.5 38.0 56.3 71.2 62.0

INV 7.8 36.8 49.7 51.1 47.5

Table 3: Variance decomposition in the 5-variable VAR, E12M ordered second. The

entries are the percentage of variance explained by the shocks.
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Variable Horizon

Impact 1-Year 2-Years 4-Years 10-Years

Learning

GDPPOT 74.9 70.3 58.8 49.1 45.2

E12M 1.2 2.6 6.5 12.3 12.5

GDP 0.0 0.9 1.0 11.5 26.8

CONS 0.0 1.1 1.0 10.2 28.3

INV 0.0 1.9 1.3 7.9 20.7

Signal

GDPPOT 0.0 3.2 13.1 26.3 21.0

E12M 88.2 83.6 81.2 69.5 62.6

GDP 0.0 13.0 36.1 48.9 31.1

CONS 0.0 14.1 33.2 48.1 31.5

INV 0.0 15.2 33.1 42.8 34.0

Real

GDPPOT 0.0 61.6 66.7 71.4 64.7

E12M 21.9 16.8 27.0 32.7 30.1

GDP 0.0 1.3 7.4 31.4 43.9

CONS 0.0 1.2 6.9 30.0 47.1

INV 0.0 1.2 4.5 20.9 32.9

Noise

GDPPOT 0.0 5.8 2.2 2.8 1.0

E12M 67.4 69.3 60.5 49.0 45.0

GDP 0.0 12.4 29.4 28.2 13.7

CONS 0.0 13.8 27.1 27.5 12.3

INV 0.0 15.3 29.9 29.1 21.6

Real+Noise

GDPPOT 0.0 67.4 72.9 76.4 65.1

E12M 89.3 86.1 87.1 80.3 73.3

GDP 0.0 13.7 36.8 59.6 57.6

CONS 0.0 15.0 34.0 57.5 59.4

INV 0.0 16.5 34.4 50.0 54.5

Table 4: Variance decomposition in the 5-variable VAR, E12M ordered last. The entries

are the percentage of variance explained by the shocks.
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Figure 1: Impulse response functions to learning (left column) and signal (right column)

shocks in the 5-variable VAR. Solid line: point estimate. Grey area: 90% confidence

bands.
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Figure 2: Impulse response functions to learning (left column) and signal (right column)

shocks in the 5-variables VAR. Solid line: point estimate. Grey area: 90% confidence

bands.
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Figure 3: Impulse response functions to real (left column) and noise (right column)

shocks in the 5-variables VAR. Solid line: point estimate. Grey area: 90% confidence

bands.
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Figure 4: Impulse response functions to real (left column) and noise (right column)

shocks in the 5-variables VAR. Solid line: point estimate. Grey area: 90% confidence

bands.
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Figure 5: Historical decomposition in the benchmark 5-variables VAR. Top panel. Solid

line: yearly growth rates of GDP; dashed line: noise component of the yearly growth rate

of GDP. Bottom panel. Solid line: business cycle component of real GDP (frequencies

between 6 to 32 quarters); dashed line: noise component of the business cycle component

of real GDP.
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Figure 6: Impulse response functions to real (left column) and noise (right column)

shocks in the 5-variables VAR. Solid line: point estimate of the VAR with E12M ordered

second. Grey area: 90% confidence bands. Dashed line: point estimate of the VAR with

E12M ordered last.
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Figure 7: Impulse response functions to real (left column) and noise (right column)

shocks in the 5-variables VAR. Solid line: point estimate of the VAR with E12M ordered

second. Grey area: 90% confidence bands. Dashed line: point estimate of the VAR with

E12M ordered last.
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Figure 8: Impulse response functions to real (left column) and noise (right column)

shocks in the 5-variables VAR. Solid line: point estimate. Grey area: 90% confidence

bands. Dashed line: point estimate of the VAR using the Conference Board Leading

Economic Indicators Index as expectation variable. Starred line: point estimate of the

VAR using stock prices (S&P500) as expectation variable.
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Figure 9: Historical decomposition in the 5-variables VAR using stock prices (S&P500)

as expectation variable. Top panel. Solid line: yearly growth rates of GDP; dashed line:

noise component of the yearly growth rate of GDP. Bottom panel. Solid line: business

cycle component of real GDP (frequencies between 6 to 32 quarters); dashed line: noise

component of the business cycle component of real GDP.
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Figure 10: Historical decomposition in the 5-variables VAR using the Conference Board

Leading Economic Indicators Index as expectation variable. Top panel. Solid line: yearly

growth rates of GDP; dotted line: noise component of the yearly growth rate of GDP.

Bottom panel. Solid line: business cycle component of real GDP (frequencies between

6 to 32 quarters); dotted line: noise component of the business cycle component of real

GDP.
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